2014年3月6日 星期四

無字證明_擺滿整個棋盤,每種菱形數量一定相同

「無字證明」

一些定理的直觀理解雖然毫無邏輯可言,完全算不上是數學證明,但這些精巧而歡樂的視角,依然讓數學家們如癡如醉。
1989年的《美國數學月刊》(American Mathematical Monthly)上有一個貌似非常困難的數學問題:下圖是由一個個小三角形組成的正六邊形棋盤,現在請你用右邊的三種(僅朝向不同的)菱形把整個棋盤全部擺滿(圖中只擺了其中一部分),證明當你擺滿整個棋盤後,你所使用的每種菱形數量一定相同。

文章末尾提供了一個非常帥的「證明」。把每種菱形塗上一種顏色,整個圖形瞬間有了立體感,看上去就成了一個個立方體在牆角堆疊起來的樣子。三種菱形分別是從左側、右側、上方觀察整個立體圖形能夠看到的面,它們的數目顯然應該相等。

嚴格地說,這個本來不算數學證明的。但它把一個純組合數學問題和立體空間圖形結合在了一起,實在讓人拍案叫絕。因此,這個問題及其鬼斧神工般的「證明」流傳甚廣,深受數學家們的喜愛。《最迷人的數學趣題——一位數學名家精彩的趣題珍集》(Mathematical Puzzles: A Connoisseur's Collection)一書的封皮上就赫然印著這個經典圖形。在數學中,類似的流氓證明數不勝數,不過上面這個可能算是最經典的了。
《最迷人的數學趣題——一位數學名家精彩的趣題珍集》的封面

沒有留言:

張貼留言